
Practical CI/CD for ABAP
Lars Hvam, Heliconia Labs, June 2021

Page 1

Home https://github.com/heliconialabs/practical-ci-cd-for-abap

License Creative Commons Attribution 4.0 International

Build 2021-09-24 10:15:23 UTC

1. Introduction
Basic CI/CD should be the default for ABAP development, not the exception. This document introduces a

incremental CI/CD setup for releases 702 and up.

The abapGit project uses abaplint to check for syntax errors before merges, this helps ensuring a stable main

branch. A similar, but more complex, approach can be used to perform validations in classic SAP landscapes

where changes are deployed using CTS.

As ABAP is a complicated language, occasionally syntax errors make it into the main branch, due to missing

checks in abaplint. The bug is then fixed in abaplint, and similar errors can henceforth be detected.

1.1. CTS
CTS will be used for deploying changes between systems in the local landscape.

See the CTS is beautiful blog for more insights.

1.2. Open Source Tooling
The approach is based on open source tooling, this allows developers to share fixes, and promotes an open

culture across organizations.

abapGit

abaplint

The tooling is delivered independently of SAP releases(702+).

And issues can be reproduced on a local PC by developers, on normal sized hardware.

1.3. CI and CD differences
The Continuous Integration and Continuous Delivery terms have different interpretations, but its important to note

some of the conceptual differences:

https://github.com/heliconialabs/practical-ci-cd-for-abap
https://github.com/heliconialabs/practical-ci-cd-for-abap/blob/main/LICENSE
https://abapgit.org/
https://abaplint.org/
https://blogs.sap.com/2020/11/05/cts-is-beautiful/
https://abapgit.org/
https://abaplint.org/
https://www.jetbrains.com/teamcity/ci-cd-guide/continuous-integration-vs-delivery-vs-deployment/

Page 2

Table 1. CI/CD concepts

Continuous Integration Continuous Delivery

Parallel Sequential

Speed Safety

Flexibility Auditable

Merge Overwrite

Style and Syntax Syntax Only

Per commit Per build artifact(Transport)

Before code review After code review

1.4. Landscape
The setup will take offset in a classic 4 tier system landscape,

DEV QAS PRE PRD

DEV : Source for all CTS transports

QAS : User acceptance test by business users

PRE : Important, the development artifacts in this system matches PRD. Transports are imported to this system

just before PRD, in case there is a syntax error the change is abandoned. This will secure no syntax errors in

PRD after import.

The scenario can be expanded with more system tiers and transport routes.

2. CI
Use abaplint for CI, if developing in a de-central git focused setup abaplint.app is one click installation for code

review and CI.

For central development, abap-code-review-guide.pdf describes various approaches, which enables code review

and CI.

3. CD
The goal is to avoid syntax errors when importing workbench transports, this is done by storing objects from

transports and systems in git, then simulating the state after import and verifying by running abaplint.

The user will not be allowed to release a transport from DEV if it results in syntax errors in QAS. Similarly, the

setup will give a list of transports which are good to import into follow-on systems.

https://abaplint.app/
https://github.com/SAP/styleguides/releases/download/latest/abap-code-review-guide.pdf
https://abaplint.org/

Page 3

The result of this setup are simple lists of good transports, but there are multiple automatic processes running to

produce the lists, this chapter describes the proposed setup.

3.1. Git Mirroring
To support a CD setup, systems are mirrored into a specific CD repository, developers will not be working with

this repository, it is only used for automation. No actual git features are used, git is used only for storing files.

Transports from DEV are mirrored into branches, the objects of the QAS system are mirrored into a QAS branch

and PRE into a PRE branch. PRD is not mirrored, the CD pipeline is executed before PRD.

Developers can use their favorite tooling to do changes in DEV, these changes are recorded into transport

requests.

Dev Repository
CD Repository

"main" branch
Transport
branches

"QAS"
branch

"PRE"
branch

Developer

Release Manager

DEV QAS PRE PRD

abaplint.app Change Management Tooling

abapGit

CTS CTS CTS

abapGit abapGit abapGit

Feedback Feedback

Below diagram gives an example of the lifecycle for a single transport request "TR1":

Page 4

Developer

Developer

DEV

DEV

QAS

QAS

PRE

PRE

PRD

PRD

Git

Git

CI

CI

1 Create transport TR1

2 Create branch TR1

3 Push objects to TR1

4 Simulate TR1 into QAS

5 Releases TR1 Gated

6 CTS import TR1 Automatic after release

7 Merge TR1 into QAS branch

8 Simulate unreleased TRs

9 CTS queues TR1

10 Simulate TR1 into PRE

11 CTS Import TR1 Gated

12 Merge TR1 into PRD branch

13 Simulate queued PRD TRs

14 CTS queues TR1

15 CTS Import TR1 Must follow PRE sequence

This is the simplest scenario, transport of copies and more system tiers can be added or removed.

3.2. Maintenance Tasks
Few maintenance tasks to perform regularly,

1. Update abapGit on DEV+QAS+PRE(PRD not needed)

2. Check QAS and PRD branches are in sync with systems

3. Keeping abaplint configuration up to date

3.3. Prerequisites
1. Force independent transports at R3TR level, this can be done with some simple reporting

3.4. Open Questions
1. Exactly how to store things ⇒ manageable

2. Rollback of ABAP objects, out of scope, abapGit solution

3. SAP notes causing syntax errors in custom code, out of scope

3.5. Feasibility
The CD setup will require many jobs to run on the CI servers. This section gives some overall estimates on the

number of CI runs given a number of transport requests.

Page 5

3.5.1. Sequential queue clearing
Importing a queue of 10 transport requests, one by one in sequence. Below numbers are for one system, but it

must be run for both QAS and PRE in the example landscape.

1. Import TR1, trigger CI on "main", rebase 9 branches

2. Import TR2, trigger CI on "main", rebase 8 branches

3. Import TR3, trigger CI on "main", rebase 7 branches

4. Import TR4, trigger CI on "main", rebase 6 branches

5. Import TR5, trigger CI on "main", rebase 5 branches

6. Import TR6, trigger CI on "main", rebase 4 branches

7. Import TR7, trigger CI on "main", rebase 3 branches

8. Import TR8, trigger CI on "main", rebase 2 branches

9. Import TR9, trigger CI on "main", rebase 1 branches

10. Import TR10, trigger CI on "main"

sequential(10) = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 55

https://en.wikipedia.org/wiki/Triangular_number

Table 2. CI runs per TR queue

TRs CI Runs

10 55

20 210

50 1275

100 5050

Moving fast in a large SAP installation, having 100 transports per week is realistic(?)

Table 3. Estimate, cost for 5050 CI runs

Scenario Time per run Memory Price/hour Total

Full container 1 hour 256 gb USD 3.0 USD 15150

abaplint 5 minutes 8 gb USD 0.1 USD 42

abaplint 2.74.23, 4 million lines of ABAP and other ABAP artifacts, syntax only, 8 gb memory allocated to node,

single core boost = 2.4ghz, in ~10 minutes (find -name '*.abap' | xargs cat | wc -l)

Public abaplint-app-performance example, 500k lines of ABAP in 50 seconds.

sequential(n) = 1
2

n(n + 1)

https://en.wikipedia.org/wiki/Triangular_number
https://github.com/heliconialabs/abaplint-app-performance

Page 6

abaplint does require more work to do proper syntax checks, which will result in slower performance. But, there

are also multiple opportunities for optimizations, and abaplint currently runs only single-threaded.

3.5.2. Speculative combinatorics
Example, 3 transports in queue, gives following combinations, note that the sequence is defined by the queue,

Table 4. Import combinations

TR1 TR2 TR3

TR1 TR2

TR1 TR3

TR2 TR3

TR1

TR2

TR3

Binomial coefficient series

https://en.wikipedia.org/wiki/Binomial_coefficient

Table 5. Speculative combinations

TRs Calculation Result

3 TRs 2^3 - 1 7 combinations

4 TRs 2^4 - 1 15 combinations

10 TRs 2^10 - 1 1023 combinations

Assuming full coverage.

Speculative merge results must be configured for a specific maximum depth.

4. Conclusion
CI/CD can be added in existing landscapes with small impact on processes and infrastructure.

1. No new infrastructure (or limited to the PRE system), cloud solution

2. 702 and up

3. Incremental cloud style evolution

4. Self and independently phased CI/CD rollout and upgrade

speculative(n) = 2n − 1

https://en.wikipedia.org/wiki/Binomial_coefficient

Page 7

Secure, only CTS import

6. Secure, only push from DEV,QAS,PRE systems

7. Business continuity, fallback to CTS if git is down

8. Not just referential checks, as things move faster, more exotic scenarios will occur

9. Keep development tooling separate from kernel

	Introduction
	CTS
	Open Source Tooling
	CI and CD differences
	Landscape

	CI
	CD
	Git Mirroring
	Maintenance Tasks
	Prerequisites
	Open Questions
	Feasibility

	Conclusion

