
abapGit Flow
Lars Hvam, Heliconia Labs, April 2024

Page 1

Home https://github.com/heliconialabs/abapgit-flow

License © Heliconia Labs, 2023

Build 2024-04-21 10:10:03 UTC

1. Introduction
abapGit flow is a end-to-end development and deployment process for SAP ABAP systems. It allows for a

modern development process, with a focus on quality and speed, where features can be deployed independently

in any order.

1.1. Key Features
Quality built-in, with automated testing and code reviews

Leverage the power of automated testing, and code reviews, to ensure quality is built-in from the start. This

allows for a fast development process, without sacrificing quality.

Independent changes, in any order to production

Using classic CTS for deployment, changes can be moved to production when they are ready, without having to

wait for other changes to be ready.

Integrates with existing change management tools/process

The development process can be adjusted to fit the needs of the customer, and the existing tools and processes.

None of the example tools listed below are mandatory, and can be replaced with other tools, or removed

completely.

Examples: Tosca, Worksoft, Service Now, Jira, Basis Technologies, Rev-Trac, SAP ChaRM, Cloud ALM

Central or de-central development

Traditionally, ABAP development is done in a central development system, where all developers work on the

same code base. This can be a bottleneck, and slow down the development process. With abapGit flow, the

development can be done in a de-central way, where each developer works on their own system and pushes

changes to git.

However, de-central development is not a requirement in abapGit flow

Flexible repository setup/split

The repository setup can be adjusted along the way, to fit the needs of the development team. The repository

can be split into multiple repositories, or merged into one, without affecting the development process.

Classic on-prem development, 7.02 and up

Works on most SAP ABAP on-prem systems, upgrade tooling at any time, no need to wait for SAP to release

new features. No need to upgrade to newest S/4 HANA to get the latest development tools.

Keeping the core moving

https://github.com/heliconialabs/abapgit-flow
https://abapgit.org/

Page 2

Keep the core moving towards a better core, improving step by step, without big bang implementations.

Safely refactor the core, without breaking existing functionality.

Editor independent

Use any editor the developer is comfortable with, including:

SE24/SE80

Eclipse ADT

Visual Studio Code, standalone ABAP development

GitHub web editor

github.dev

AI ready

Get ready for AI powered development, by moving the ABAP code to git opens up for new possibilities, such as:

GitHub Copilot

GitHub Copilot X

GitHub Copilot Workspace

1.2. Key Design Decisions
The default setup described in this document includes the following design decisions:

1. Changes can be moved independently to production, in any order using classic CTS

2. SAP ABAP system initiates all communication, no Cloud → On-prem connections

3. GitHub Cloud is the central repository

4. No fully automated deployment to production after the development is done, each feature is manually tested

or requires manual approval before moving to production

However, the design can be adjusted to fit the needs of the customer, and the existing tools and processes.

For product/add-on development which is typically released as a whole, instead of per feature, see whitepaper

ABAP Product Development.

1.3. Nuve Platform
Nuve Platform offers decentralized development systems and automated unit testing, streamlining continuous

integration processes.

The platform features a self-service portal that enables developers to manage the lifecycle of SAP development

instances easily, without requiring Basis expertise. Instances are provisioned in minutes, facilitating a cost-

effective and practical decentralized development setup.

Nuve’s GitHub integration automates the execution of unit tests within your workflow. This ensures valid results

by running tests in real systems.

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=larshp.standalone-abap-development
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files
https://docs.github.com/en/codespaces/the-githubdev-web-based-editor
https://github.com/features/copilot
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://githubnext.com/projects/copilot-workspace/
https://docs.heliconialabs.com/abap-product-development.pdf

Page 3

Nuve Platform

1.4. abaplint.app
abaplint.app provides fast configurable static analysis of ABAP code, with code insights and statistics.

Configuration is versioned and changed like code, any developer can suggest changes and changes are

reviewed before being merged.

All developers have access to insights and statistics, without additional infrastructure setup or maintenance.

abaplint.app

1.5. Example landscape
For the setup and examples in this document, the following landscape is used:

GitHub Cloud

DEV TST PRD

STG

Nuve Development

System

Nuve Development

System

CTS CTS

CT
S

Push & Pull
Push & Pull

Push & Pull

DEV is the central development system, managed by the customer infrastructure team

TST is used for testing and sign-off by business

STG staging system to do final validation before moving to production

PRD production environment

https://www.nuveplatform.com/
https://abaplint.app/

Page 4

2. End to End Process
There are many steps in the end-to-end process, however, users are guided through the steps via tooling and

automation.

Scoping and
sequencing

Development
starts

Push to new
branch

Create draft
PR

Push more
changes

Fix feedback
from CI

Mark PR ready
for review

Peer review

Mirror PR to
TR in DEV

Release and
import TOC

Testing in TST

Release TR

Import to
STG & PRD

By Project Manager/Product Owner

In central DEV or decentral Nuve

Central: abapGit Flow
Decentral: vanilla abapGit

On GitHub

Provided on GitHub, visible in abapGit flow screen
abaplint.app for static analysis

Developer, on GitHub

Peer & Developer, on GitHub

Developer, on DEV using abapGit flow screen

Developer, on DEV using abapGit flow screen
Transport sequence checks

Business users

Developer, on DEV using abapGit flow screen
Transport sequence checks

Existing customer process/Basis

approval

if decentral

approval

Page 5

3. Development
Development is done centrally in DEV and/or de-centrally in the Nuve systems.

The package structure is split into sizeable packages, corresponding to the areas of responsibility inside the

system. Each area has one or more repositories on GitHub.

Before starting the development, the tasks are scoped to a reasonable size. Then tasks are assigned to

developers, and the developers create a branch for the task and start working on it. The branch is pushed to

GitHub and a pull request is created.

3.1. Technical Quality Assurance
Feedback regarding static analysis and unit tests is given by the continuous integration system. The developer

can see the feedback in the pull request, and fix any issues.

Fast running feedback is prioritized first, if they are successful, longer more precise tests are run.

When the functionality is ready, the developer sets the pull request to "Ready for review", and collaborates with

the peer reviewer until the pull request is approved.

For de-central development, approved pull requests are mirrored into central DEV.

After moving a transport of copies to the TST system, the development is ready for functional testing, and sign-

off by business.

3.2. Branching examples
Developers create feature branches based on main , and create a draft pull request when the first commits are

pushed. Push often, both to get a backup, increase visibility, and get the feedback from continuous integration.

If the branch is not up to date, the developer can press the "Update branch" button to get the latest changes from

main .

When the transport is moved to production, the pull request is squashed into main and the branch is deleted.

main

sq
uash

feature1

feature2

rebase
sq

uash

It is also possible to have a more long lived branch, here a project branch is created from main , and the

features are developed from that. But do try to avoid long lived branches, keep moving changes to production if

possible, or make it possible via eg. feature flags.

Page 6

main

sq
uash

maintenance

feature1

project

sq
uash

project

feature2

sq
uash

rebase
sq

uash

project

feature3

3.3. Development guidelines recommendations
Typically customer developments consists of multiple independent objects. These objects can be organized into

small packages. Example: one package with a transaction, report, message class, and a global class for

business logic.

Reduce reuse of message classes, create many, eg. one for each global class. This will reduce the risk of

conflicts in the message class XML file. abaplint rule easy_to_find_messages can be used to enforce this,

while making it easier to find the exact place a message is issued.

Page 7

4. Deployment
When development is done, unit tested and reviewed, the next step is to deploy the changes to production. This

is done via the classic Change and Transport System (CTS).

4.1. Deployment Process Overview
Most steps of the deployment process are automated. A failure at a late stage indicates a need for earlier

process improvements to detect such issues.

Trigger TR Release

Sequence Check

Import to STG

Import to PRD

Check PR Approved

Check PR CI Status

SCI Checks

Check PR Up to Date

Success

Success

Success

Success

Success

Success

Success

TR Released

Success

Merge PR

Delete Branch

Success

Success

Rework

Investigate

Investigate

Override

Override

Override

Override

Override

Back to Development

Page 8

4.2. System SCI checks
Static analysis feedback is provided to the developer immediately on the first push.

In GitHub, the code is isolated from the system’s structure. SAP Code Inspector (SCI) can be used to perform

additional checks, especially for assessing aspects like package structure, which GitHub alone does not handle.

4.3. Sequencing
Development projects often have dependencies that may not yet be available in the production environment. This

can cause issues when moving the transport to production.

This can be discovered already in the pull request during development, eg. via the abaplint.app cross check or

parallel changes feature.

To help checking the SAP standard transaction /SDF/TRCHECK can be used.

And for final verification, the transport is imported into the STG system, just previously to importing into the PRD

system.

4.4. Rollback
Transports can be rolled back by creating an additional transport with the original contents.

	Introduction
	Key Features
	Key Design Decisions
	Nuve Platform
	abaplint.app
	Example landscape

	End to End Process
	Development
	Technical Quality Assurance
	Branching examples
	Development guidelines recommendations

	Deployment
	Deployment Process Overview
	System SCI checks
	Sequencing
	Rollback

